Magnetic Force 2

Last time we worked an example of the magnetic force on a moving charged particle.

\[\vec{F} = q \vec{v} \times \vec{B} \]

And we saw demos of the magnetic force on a current carrying wire. That is just the net (summed) force from many moving charges.

Now, I want to derive the formula for the force on a current carrying wire.

Don't let the word "derive" bore or distract you. You might want me to just state the formula---as was probably done in high school physics. But to understand the physics we need to understand where the formula comes from.

If we have a straight wire of length \(l \) carrying a current, \(I \), that is immersed in a magnetic field, perpendicular to \(l \), then \(\vec{F} \) is just the sum of the forces from the individual charges.
\[\vec{F} = \sum_i q \vec{v}_i \times \vec{B} \rightarrow \int dq \vec{v}_i \times \vec{B} \]

Integrate over the whole wire.

I don’t want to count every electron, so let’s recall the macroscopic description of current.

\[I = \frac{dQ}{dt} = \frac{\text{charge moving past some point}}{\text{an infinitesimal time}} \]

\[= n q v_d A \quad (n = \text{charge carrier density}) \]

because \(n q v_d A dt \) is \(\frac{\text{C}}{\text{vol}} \cdot \text{Vol.} \)

\(V_d \) is the slow, effective drift velocity.

Each individual electron flies around in other directions randomly, these all average out to just a tiny \(V_d \) in one direction.

All the components of this motion add to zero force, except the \(v_d \) component.

\[\Rightarrow \vec{F} = \int dq \vec{v}_d \times \vec{B} \]

But, all charges have the same net \(v_d \). Only thing changing in integral is \(\int dq = \text{total Q} \). Thus total charge moving in the wire.

That total charge is \(Q = n q v_d A \Delta t \) from above.
\[Q = I \Delta t = I \frac{\text{length of wire}}{V_d} \]

So,

\[F = I \frac{\text{length of wire}}{V_d} \hat{V}_d \times \hat{B} \]

The \(\hat{V}_d \)'s cancel, at least in magnitude, and we are left with just the direction of \(\hat{V}_d \). That is along the wires length. So,

\[F = I \hat{L} \times \hat{B} \]

To come up with this, we had to assume that the wire was straight. For a real, non-straight, wire, we just add up the force from small sections, \(d\vec{F} \), which are straight.

\[d\vec{F} = I d\vec{L} \times \hat{B} \]

As we've seen over \(\frac{\Delta \vec{F}}{\Delta L} \), the total force is found by integrating all these small elements.

\[\text{DEMO 68.27 Levitate an aluminum conductor.} \]

Comment on \(+q \) vs. \(-q \) charge carriers in current. Same force either way.
Suppose we had a loop of wire. Here I make it a rectangular loop instead of a circle to simplify the math.

This is immersed in uniform magnetic field pointed into the page (symbolized by $\hat{\theta}$).

What is the force on the loop?

It is the sum of the pieces. Since it is rectangular, we can sum the four sides instead of using an integral.

$$\vec{F}_1 = I h B (\hat{\mathbf{x}}) \quad \text{i.e. to the left as drawn.}$$

$$\vec{F}_2 = I w B (\hat{\mathbf{y}}) \quad \text{i.e. up the page}$$

$$\vec{F}_3 = I h B (\hat{\mathbf{x}}) \quad \text{to the right.}$$

$$\vec{F}_4 = I w B (\hat{\mathbf{y}}) \quad \text{down.}$$

If parallel sides are same length, i.e., a rectangle, then the total force is zero, opposite sides cancel.
We can make this more interesting by adding a small twist. If instead of this we had this:

A clearer, less 3D view, i.e. only side view is:

Then, what is the force?

\[B \rightarrow I \rightarrow \theta \Rightarrow F_1 = I h B \sin \theta \] into the page.

\[B \rightarrow I \rightarrow \frac{\pi - \theta}{\pi - \theta} \Rightarrow F_3 = I h B \sin(\pi - \theta) \] out of page

Then pulling loop out as before, just a bit weaker.

Top wire: \[\rightarrow \bigcirc \Rightarrow F_2 = I w B \] up.

Bottom wire: \[\rightarrow \bigcirc \Rightarrow F_4 = I w B \] down.

These forces still cancel.
But, there is a net torque!

\[\tau = \frac{1}{2} I w B \cos \theta + \frac{1}{2} I w B \cos \theta \]

\[= h w B \cos \theta \]

\[= h w I B \sin \varphi \]

\[= I A B \sin \varphi \]

\[= I \vec{A} \times \vec{B} \]

The torque points out of the page, so the loop rotates counter clockwise.

DEMO 68.48
Torque on a current carrying loop.
This torque is the principle behind an electric motor.

- Brushes are aligned with commutator segments
- Current flows into red-colored side of rotor and out of blue-colored side
- Magnetic torque causes rotor to spin counterclockwise

(a) Rotation axis

(b) Rotor has turned 90°
- Each brush is in contact with both commutator segments
- Current bypasses rotor altogether
- No magnetic torque on rotor

(c) Brushes are aligned with commutator segments
- Current flows into blue-colored side of rotor and out of red-colored side
- Magnetic torque again causes rotor to spin counterclockwise

The torque becomes zero when \dot{A} and \dot{B} are parallel, and then points opposite as the loop rotates further. To keep \dot{E} from switching sign, just reverse the current.

A DC motor does that with small "brushes" that alternately contact each end of the loop.

To increase \dot{E}, increase I or A (or B of course). Combining multiple loops of wire increases A.
\[d \vec{F} = I \, d\vec{L} \times \vec{B} \] is also the principle behind a speaker.

A current in the coil causes a force on the coil
\[\vec{F} = I \, \vec{L} \times \vec{B} \]
because the magnets are arranged to have \(\vec{B} \) perpendicular to the coil everywhere.

The force on the coil pushes the speaker's cone in and out. If \(I \) varies then the force varies and the air pressure from the moving cone varies.

\[\Rightarrow \text{Varying air pressure} \Rightarrow \text{sound.} \]